How do you integrate ln x / x^(1/2)lnxx12? Calculus Techniques of Integration Integration by Parts 1 Answer Eddie Jul 5, 2016 = 2 sqrt x ln x - 4 sqrt x + C=2√xlnx−4√x+C Explanation: Use IBP int u v' = uv - int u'v here u = ln x, u' = 1/x v' = x^{-1/2}, v = 2 x^{1/2}, using the power rule so we have 2 sqrt x ln x - 2 int dx qquad 1/x sqrt x = 2 sqrt x ln x - 2 int dx qquad x^{-1/2} = 2 sqrt x ln x - 2*x^{1/2}/(1/2) + C = 2 sqrt x ln x - 4 sqrt x + C Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 6191 views around the world You can reuse this answer Creative Commons License