How do you integrate (lnx)^2/x? Calculus Techniques of Integration Integration by Parts 1 Answer Konstantinos Michailidis Jun 19, 2016 Notice that (lnx)'=1/x hence int (lnx)^2/x dx=int (lnx)^2*(lnx)' dx=1/3*(lnx)^3+c Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 1642 views around the world You can reuse this answer Creative Commons License