How do you integrate lnx/x^.5?

1 Answer
May 26, 2016

2sqrtx(lnx-2)+C

Explanation:

This can be written as

intlnx/sqrtxdx

Integration by parts takes the form:

intudv=uv-intvdu

Here, let u=lnx and dv=1/sqrtxdx.

These imply that:

{(u=lnx" "=>" "du=1/xdx),(dv=x^(-1/2)dx" "=>" "v=2x^(1/2)=2sqrtx):}

Thus,

intlnx/sqrtxdx=2sqrtxlnx-int(2sqrtx)/xdx

=2sqrtxlnx-2intx^(-1/2)dx

=2sqrtxlnx-4sqrtx+C

=2sqrtx(lnx-2)+C