How do you integrate lnx/x^.5?
1 Answer
May 26, 2016
Explanation:
This can be written as
intlnx/sqrtxdx
Integration by parts takes the form:
intudv=uv-intvdu
Here, let
These imply that:
{(u=lnx" "=>" "du=1/xdx),(dv=x^(-1/2)dx" "=>" "v=2x^(1/2)=2sqrtx):}
Thus,
intlnx/sqrtxdx=2sqrtxlnx-int(2sqrtx)/xdx
=2sqrtxlnx-2intx^(-1/2)dx
=2sqrtxlnx-4sqrtx+C
=2sqrtx(lnx-2)+C