How do you integrate sin(ln(4x+5))sin(ln(4x+5))?

1 Answer
May 27, 2018

I=(4x+5)/8[sin(ln(4x+5))-cos(ln(4x+5))]+CI=4x+58[sin(ln(4x+5))cos(ln(4x+5))]+C

Explanation:

Here,

I=intsin(ln(4x+5))dxI=sin(ln(4x+5))dx

Subst. color(violet)(ln(4x+5)=u=>4x+5=e^uln(4x+5)=u4x+5=eu

=>4dx=e^udu=>dx=1/4e^udu4dx=eududx=14eudu

So,

I=intsinuxx1/4e^uduI=sinu×14eudu

=>4I=intsinue^udu...to(A)

"Using "color(blue)"Integration by Parts :"

color(red)(intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx

=>4I=sinuinte^udu-int(cosuinte^udu)du

=>4I=sinu*e^u-intcosue^udu

=>4I=sinue^u-I_1...to(B)

Where, I_1=intcosue^udu

Again "using "color(blue)"Integration by Parts :"

:.I_1=cosuinte^udu-int(-sinuinte^udu)du

:.I_1=cosue^u+intsinue^udu+c'

:.I_1=cosue^u+4I+c'...to from (A)

From (B) we get,

:.4I=sinue^u-{cosue^u+4I}+c,where,c=-c'

:.4I=sinue^u-cosue^u-4I+c

4I+4I=sinue^u-cosue^u+c

8I=e^u(sinu-cosu)+c

I=1/8e^u(sinu-cosu)+C,where, C=c/8

Subst, back , color(violet)(u=ln(4x+5) and e^u=4x+5

I=1/8(4x+5)[sin(ln(4x+5))-cos(ln(4x+5))]+C

I=(4x+5)/8[sin(ln(4x+5))-cos(ln(4x+5))]+C