Here,
I=intsin(ln(4x+5))dxI=∫sin(ln(4x+5))dx
Subst. color(violet)(ln(4x+5)=u=>4x+5=e^uln(4x+5)=u⇒4x+5=eu
=>4dx=e^udu=>dx=1/4e^udu⇒4dx=eudu⇒dx=14eudu
So,
I=intsinuxx1/4e^uduI=∫sinu×14eudu
=>4I=intsinue^udu...to(A)
"Using "color(blue)"Integration by Parts :"
color(red)(intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx
=>4I=sinuinte^udu-int(cosuinte^udu)du
=>4I=sinu*e^u-intcosue^udu
=>4I=sinue^u-I_1...to(B)
Where, I_1=intcosue^udu
Again "using "color(blue)"Integration by Parts :"
:.I_1=cosuinte^udu-int(-sinuinte^udu)du
:.I_1=cosue^u+intsinue^udu+c'
:.I_1=cosue^u+4I+c'...to from (A)
From (B) we get,
:.4I=sinue^u-{cosue^u+4I}+c,where,c=-c'
:.4I=sinue^u-cosue^u-4I+c
4I+4I=sinue^u-cosue^u+c
8I=e^u(sinu-cosu)+c
I=1/8e^u(sinu-cosu)+C,where, C=c/8
Subst, back , color(violet)(u=ln(4x+5) and e^u=4x+5
I=1/8(4x+5)[sin(ln(4x+5))-cos(ln(4x+5))]+C
I=(4x+5)/8[sin(ln(4x+5))-cos(ln(4x+5))]+C