How do you integrate 1x2?

1 Answer
Mar 29, 2018

The answer is =12arcsinx+12x1x2+C

Explanation:

Let x=sinθ, , dx=cosθdθ

cosθ=1x2

sin2θ=2sinθcosθ=2x1x2

Therefore, the integral is

I=1x2dx=cosθcosθdθ

=cos2θdθ

cos2θ=2cos2θ1

cos2θ=1+cos2θ2

Therefore,

I=12(1+cos2θ)dθ

=12(θ+12sin2θ)

=12arcsinx+12x1x2+C