How do you integrate x^2/(sqrt(9-x^2))?
1 Answer
Explanation:
I=intx^2/sqrt(9-x^2)dx
Rewrite
I=int(x^2-9+9)/sqrt(9-x^2)dx=int(x^2-9)/sqrt(9-x^2)dx+int9/sqrt(9-x^2)dx
Rewriting for simplification:
I=-int(9-x^2)/sqrt(9-x^2)dx+int9/sqrt(9-x^2)dx
I=-intsqrt(9-x^2)dx+int9/sqrt(9-x^2)dx
Let
J=-intsqrt(9-x^2)dx
Let
J=-intsqrt(9-9sin^2theta)(3costhetad theta)
J=-3intsqrt9sqrt(1-sin^2theta)(costheta)d theta
J=-9intcos^2thetad theta
Using
J=-9int(cos2theta+1)/2d theta=-9/2intcos2thetad theta-9/2intd theta
Solve the first integral by sight or by substitution:
J=-9/4sin2theta-9/2theta
Using
J=-9/2sinthetacostheta-9/2theta
From our substitution
Furthermore, we see that
J=-9/2(x/3)(1/3sqrt(9-x^2))-9/2arcsin(x/3)
J=-1/2xsqrt(9-x^2)-9/2arcsin(x/3)
Now solving for
K=int9/sqrt(9-x^2)dx
We will use the same substitution,
K=int9/sqrt(9-9sin^2phi)(3cosphidphi)
K=int(27cosphi)/(sqrt9sqrt(1-sin^2phi))dphi
K=int(9cosphi)/cosphidphi=9intdphi=9phi
From
K=9arcsin(x/3)
Now that we've solved for
I=J+K
I=[-1/2xsqrt(9-x^2)-9/2arcsin(x/3)]+9arcsin(x/3)
I=-1/2xsqrt(9-x^2)+9/2arcsin(x/3)
I=(9arcsin(x/3)-xsqrt(9-x^2))/2+C