How do you integrate x^2/(sqrt(9-x^2))?

1 Answer
Nov 5, 2016

(9arcsin(x/3)-xsqrt(9-x^2))/2+C

Explanation:

I=intx^2/sqrt(9-x^2)dx

Rewrite x^2 as x^2-9+9:

I=int(x^2-9+9)/sqrt(9-x^2)dx=int(x^2-9)/sqrt(9-x^2)dx+int9/sqrt(9-x^2)dx

Rewriting for simplification:

I=-int(9-x^2)/sqrt(9-x^2)dx+int9/sqrt(9-x^2)dx

I=-intsqrt(9-x^2)dx+int9/sqrt(9-x^2)dx

Let J=-intsqrt(9-x^2)dx and K=int9/sqrt(9-x^2)dx.

J=-intsqrt(9-x^2)dx

Let x=3sintheta so that dx=3costhetad theta:

J=-intsqrt(9-9sin^2theta)(3costhetad theta)

J=-3intsqrt9sqrt(1-sin^2theta)(costheta)d theta

J=-9intcos^2thetad theta

Using cos2theta=2cos^2theta-1 so solve for cos^2theta:

J=-9int(cos2theta+1)/2d theta=-9/2intcos2thetad theta-9/2intd theta

Solve the first integral by sight or by substitution:

J=-9/4sin2theta-9/2theta

Using sin2theta=2sinthetacostheta:

J=-9/2sinthetacostheta-9/2theta

From our substitution x=3sintheta we see that theta=arcsin(x/3).

Furthermore, we see that sintheta=x/3 and costheta=sqrt(1-sin^2theta)=sqrt(1-x^2/9)=1/3sqrt(9-x^2). Thus:

J=-9/2(x/3)(1/3sqrt(9-x^2))-9/2arcsin(x/3)

J=-1/2xsqrt(9-x^2)-9/2arcsin(x/3)

Now solving for K:

K=int9/sqrt(9-x^2)dx

We will use the same substitution, x=3sinphi, so dx=3cosphidphi.

K=int9/sqrt(9-9sin^2phi)(3cosphidphi)

K=int(27cosphi)/(sqrt9sqrt(1-sin^2phi))dphi

K=int(9cosphi)/cosphidphi=9intdphi=9phi

From x=3sinphi we see that phi=arcsin(x/3):

K=9arcsin(x/3)

Now that we've solved for J and K, return to I:

I=J+K

I=[-1/2xsqrt(9-x^2)-9/2arcsin(x/3)]+9arcsin(x/3)

I=-1/2xsqrt(9-x^2)+9/2arcsin(x/3)

I=(9arcsin(x/3)-xsqrt(9-x^2))/2+C