How do you integrate x^3 cos(x^2) dx?

1 Answer
Feb 24, 2017

(x^2sin(x^2)+cos(x^2))/2+C

Explanation:

intx^3cos(x^2)dx

Let t=x^2. This implies that dt=(2x)dx. It may not seem like this is in the integrand, but note that x^3=x^2(x)=1/2x^2(2x). Then:

I=1/2intx^2cos(x^2)(2x)dx

I=1/2inttcos(t)dt

Now we should do integration by parts, which comes in the form intudv=uv-intvdu. Let:

{(u=t,=>,du=dt),(dv=cos(t)dt,=>,v=sin(t)):}

Then:

I=1/2(tsin(t)-intsin(t)dt)

I=(tsin(t)+cos(t))/2

I=(x^2sin(x^2)+cos(x^2))/2+C