How do you integrate x^3 cos(x^2) dx?
1 Answer
Feb 24, 2017
Explanation:
intx^3cos(x^2)dx
Let
I=1/2intx^2cos(x^2)(2x)dx
I=1/2inttcos(t)dt
Now we should do integration by parts, which comes in the form
{(u=t,=>,du=dt),(dv=cos(t)dt,=>,v=sin(t)):}
Then:
I=1/2(tsin(t)-intsin(t)dt)
I=(tsin(t)+cos(t))/2
I=(x^2sin(x^2)+cos(x^2))/2+C