How do you integrate x^3/sqrt(1-x^2) dx?

1 Answer
Aug 5, 2016

= -1/3 (x^2 + 2 ) sqrt(1-x^2) \ + C

Explanation:

int \ x^3/sqrt(1-x^2) \ dx

=int \ x^2 d/dx (-sqrt(1-x^2)) \ dx

=-x^2 sqrt(1-x^2) + int \d/dx( x^2) sqrt(1-x^2) \ dx

=-x^2 sqrt(1-x^2) + int \ 2x sqrt(1-x^2) \ dx

=-x^2 sqrt(1-x^2) + int \ d/dx(-2/3 (1-x^2)^(3/2) )\ dx

=-x^2 sqrt(1-x^2) -2/3 (1-x^2)^(3/2) + C

= sqrt(1-x^2) (-x^2 -2/3 (1-x^2) ) + C

= sqrt(1-x^2) (-x^2/3 -2/3 ) + C

= -1/3 (x^2 + 2 ) sqrt(1-x^2) \ + C