How do you integrate x^3 sqrt(x^2 + 1) dx?

1 Answer
Apr 25, 2018

The answer (x^2+1)^(5/2)/5-(x^2+1)^(3/2)/3+c

Explanation:

Show the steps below

intx^3*(x^2+1)^(1/2)*dx

suppose:
u=x^2+1
x=(u-1)^(1/2)
du=2x*dx
dx=1/(2x)*du
the int become after suppose:

int[sqrt(u-1)]^3*sqrt(u)*1/(2*sqrt(u-1))*du

1/2int[sqrt(u-1)]^2*sqrtu*du

1/2int(u-1)*sqrtu*du=1/2intu*sqrtu-sqrtu*du=1/2intu^(3/2)-u^(1/2)*du

1/2[2/5*u^(5/2)-2/3*u^(3/2)]+c

u^(5/2)/5-u^(3/2)/3+c

(x^2+1)^(5/2)/5-(x^2+1)^(3/2)/3+c