How do you integrate x^3/((x^2+5)^2)?

1 Answer
Mar 26, 2015

int x^3/(x^2+5)^2dx

We can rewrite :

x^3/(x^2+5)^2= (betax+gamma)/(x^2+5) + (thetax+nu)/(x^2+5)^2

So : ((betax+gamma)(x^2+5))/((x^2+5)(x^2+5))+(thetax+nu)/(x^2+5)^2

Then : (betax^3+gammax^2+(5beta+theta)x+nu+5gamma)/(x^2+5)^2

Identification :

nu + 5gamma = 0
5beta + theta = 0
gamma = 0
beta = 1

So :

beta = 1
gamma = 0
theta = -5
nu = 0

int x^3/(x^2+5)^2dx = intx/(x^2+5)dx-5int(x)/(x^2+5)^2dx

1/2int (2x)/(x^2+5)dx -5/2int(2x)/(x^2+5)^2dx

= (1/2ln(x^2+5)+5/(2x^2+10))+C