How do you integrate (x^4)(lnx)?

1 Answer
Jul 26, 2016

intlnx xxx^4dx=x^5/5(lnx-1/5)

Explanation:

WE can use integration by parts intudv=uv-intvdu

Let u=lnx and v=x^5/5

Hence du=dx/x and dv=x^4dx and intudv=uv=intvdu is

intlnx xxx^4dx=intudv=uv-intvdu

= x^5/5xxlnx-intx^5/5xxdx/x

= (lnx xx x^5)/5-1/5intx^4dx

= (lnx xx x^5)/5-x^5/25

= x^5/5(lnx-1/5)