How do you integrate (x^4)(lnx)? Calculus Techniques of Integration Integration by Parts 1 Answer Shwetank Mauria Jul 26, 2016 intlnx xxx^4dx=x^5/5(lnx-1/5) Explanation: WE can use integration by parts intudv=uv-intvdu Let u=lnx and v=x^5/5 Hence du=dx/x and dv=x^4dx and intudv=uv=intvdu is intlnx xxx^4dx=intudv=uv-intvdu = x^5/5xxlnx-intx^5/5xxdx/x = (lnx xx x^5)/5-1/5intx^4dx = (lnx xx x^5)/5-x^5/25 = x^5/5(lnx-1/5) Answer link Related questions How do I find the integral int(x*ln(x))dx ? How do I find the integral int(cos(x)/e^x)dx ? How do I find the integral int(x*cos(5x))dx ? How do I find the integral int(x*e^-x)dx ? How do I find the integral int(x^2*sin(pix))dx ? How do I find the integral intln(2x+1)dx ? How do I find the integral intsin^-1(x)dx ? How do I find the integral intarctan(4x)dx ? How do I find the integral intx^5*ln(x)dx ? How do I find the integral intx*2^xdx ? See all questions in Integration by Parts Impact of this question 14684 views around the world You can reuse this answer Creative Commons License