How do you integrate #xe^(x^2) dx#? Calculus Techniques of Integration Integration by Parts 1 Answer Daniel L. Aug 14, 2016 This can be done by substitution. See explanation. Explanation: #intxe^(x^2)dx=|(t=x^2),(dt=2xdx),(dt/2=xdx)|=int(e^t/2)dt=1/2int(e^tdt)# #=1/2e^t+C=1/2e^(x^2)+C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 104029 views around the world You can reuse this answer Creative Commons License