How do you long divide #(x^4 + a^4) / (x^2 + a^2)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Shwetank Mauria Jan 24, 2017 Quotient is #x^2-a^2# and remainder is #2a^4# Explanation: #" "x^4+0x^3+0x^2+0x+a^4# #color(magenta)(x^2)(x^2+a^2) ->color(white)(X)ul(x^4+0x^3+a^2x^2) larr" Subtract"# #" "0color(white)(XXX)-a^2x^2+0x+a^4# #color(magenta)(-a^2)(x^2+a^2)->" "color(white)(XXX)ul(-a^2x^2-0x-a^4) larr" Subtract"# #" "2a^4# Hence, quotient is #x^2-a^2# and remainder is #2a^4# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1318 views around the world You can reuse this answer Creative Commons License