How do you multiply (-1+2i)(3-i) (1+2i)(3i) in trigonometric form?

1 Answer
Apr 13, 2016

(-1+2i)*(3-i)=sqrt50[cosarctan(-7)+isinarctan(-7)](1+2i)(3i)=50[cosarctan(7)+isinarctan(7)]

Explanation:

We first covert them into trigonometric form. In this form a+bi=r(costheta+isintheta)a+bi=r(cosθ+isinθ) or a+bi=r*e^(itheta)a+bi=reiθ, where r=sqrt(a^2+b^2)r=a2+b2 and theta=arctan(b/a)θ=arctan(ba)

Hence, -1+2i=sqrt5e^(ialpha)1+2i=5eiα, where alpha=arctan(-2)α=arctan(2)

and 3-i=sqrt10e^(ibeta)3i=10eiβ, where beta=arctan(-1/3)β=arctan(13)

Hence (-1+2i)*(3-i)=sqrt50e^(i(alpha+beta))(1+2i)(3i)=50ei(α+β)

As tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalpha*tanbeta)tan(α+β)=tanα+tanβ1tanαtanβ or

tan(alpha+beta)=((-2)-1/3)/(1-(-2)*(-1/3))=(-7/3)/(1-2/3)=(-7/3)/(1/3)=-7tan(α+β)=(2)131(2)(13)=73123=7313=7

Hence (-1+2i)*(3-i)=sqrt50e^(i(arctan(-7)))(1+2i)(3i)=50ei(arctan(7))

or (-1+2i)*(3-i)=sqrt50[cosarctan(-7)+isinarctan(-7)](1+2i)(3i)=50[cosarctan(7)+isinarctan(7)]