We first covert them into trigonometric form. In this form a+bi=r(costheta+isintheta)a+bi=r(cosθ+isinθ) or a+bi=r*e^(itheta)a+bi=r⋅eiθ, where r=sqrt(a^2+b^2)r=√a2+b2 and theta=arctan(b/a)θ=arctan(ba)
Hence, -1+2i=sqrt5e^(ialpha)−1+2i=√5eiα, where alpha=arctan(-2)α=arctan(−2)
and 3-i=sqrt10e^(ibeta)3−i=√10eiβ, where beta=arctan(-1/3)β=arctan(−13)
Hence (-1+2i)*(3-i)=sqrt50e^(i(alpha+beta))(−1+2i)⋅(3−i)=√50ei(α+β)
As tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalpha*tanbeta)tan(α+β)=tanα+tanβ1−tanα⋅tanβ or
tan(alpha+beta)=((-2)-1/3)/(1-(-2)*(-1/3))=(-7/3)/(1-2/3)=(-7/3)/(1/3)=-7tan(α+β)=(−2)−131−(−2)⋅(−13)=−731−23=−7313=−7
Hence (-1+2i)*(3-i)=sqrt50e^(i(arctan(-7)))(−1+2i)⋅(3−i)=√50ei(arctan(−7))
or (-1+2i)*(3-i)=sqrt50[cosarctan(-7)+isinarctan(-7)](−1+2i)⋅(3−i)=√50[cosarctan(−7)+isinarctan(−7)]