For the given numbers:
r_1 = sqrt(-1^2+ -6^2)r1=√−12+−62
r_1 = sqrt(37)r1=√37
theta_1 = tan^-1((-6)/-1)+piθ1=tan−1(−6−1)+π
theta_1 = tan^-1(6)+piθ1=tan−1(6)+π
Please notice that we add piπ because the signs of "a" and "b" tell us that the angle is in the 3rd quadrant.
r_2 = sqrt(4^2 + -1^2)r2=√42+−12
r_2 = sqrt(17)r2=√17
theta_2 = tan^-1((-1)/4)+2piθ2=tan−1(−14)+2π
Please notice that we add 2pi2π because the signs of "a" and "b" tell us that the angle is in the 4th quadrant.
Do the multiplication:
r_1(cos(theta_1)+isin(theta_1))xxsqrt(17)(cos(theta_2)+isin(theta_2)) = r_1r_2(cos(theta_1+theta_2)+isin(theta_1+theta_2))r1(cos(θ1)+isin(θ1))×√17(cos(θ2)+isin(θ2))=r1r2(cos(θ1+θ2)+isin(θ1+θ2))
sqrt(37)(cos(tan^-1(6)+pi)+isin(tan^-1(6)+pi))xxsqrt(17)(cos(tan^-1((-1)/4)+2pi)+isin(tan^-1((-1)/4)+2pi)) = sqrt(37)sqrt(17)(cos(tan^-1(6)+pi+tan^-1((-1)/4)+2pi)+isin(tan^-1(6)+pi+tan^-1((-1)/4)+2pi))