How do you multiply (-1-7i)(-3-4i) in trigonometric form?

1 Answer
Feb 23, 2018

Thus,
(-1-7i)(-3-4i)=10sqrt2cis(7pi)/4

Explanation:

"Let,"z_1=-1-7i,

Re(z_1)=-1," "Im(z_1)=-7

r_1=sqrt((-1)^2+(-7)^2) = sqrt50=5sqrt2

theta_1=tan^-1((-7)/(-1))=pi+tan^-1(7)

"Let," z_2=-3-4i

Re(z_2)=-3," "Im(z_2)=-4

r_2=sqrt((-3)^2+(-4)^2) = sqrt25=5

theta_2=tan^-1((-4)/(-3))=pi+tan^-1(4/3)

z_1=r_1cistheta_1
z_2=r_2cistheta_2

z_1z_2=(r_1cistheta_1)(r_2cistheta_2)

z_1z_2=r_1r_2cistheta_1cistheta_2
By De-Moivre's theorem

cistheta_1cistheta_2=cis(theta_1+theta_2)

Thus,

z_1z_2=r_1r_2cis(theta_1+theta_2)

Substituting,

r_1r_2=5sqrt2xx5=10sqrt2
theta_1+theta_2=pi+tan^-1(7)+pi+tan^-1(4/3)
=2pi+tan^-1(7)+tan^-1(4/3)

tan^-1(7)+tan^-1(4/3)=tan^-1((7+4/3)/(1-7xx4/3))

(7+4/3)/(1-7xx4/3)=(7xx3+4)/(3-7xx4)=(21+4)/(3-28)=25/-25=1/-1
tan^-1(7)+tan^-1(4/3)=tan^-1(1/-1)=2pi-tan^-1(1)

tan^-1(1)=pi/4

2pi-tan^-1(1)=2pi-pi/4=(7pi)/4

r_1cistheta_1r_2cistheta_2=10sqrt2cis(7pi)/4

Thus,
(-1-7i)(-3-4i)=10sqrt2cis(7pi)/4