How do you multiply (25a^2b)^3(1/5abc)^2?

2 Answers
Apr 22, 2015

Start with the exponent rule (x^m)^n=x^(m*n) .

(25a^2b)^3(1/5abc)^2=

(25^3a^6b^3)((1/5)^2a^2b^2c^2)=

(15625a^6b^3)((1/25)a^2b^2c^2)=

Divide 15625 by 25 and use the exponent rule (x^m)(x^n)=x^(m+n).

(15625/25)(a^(6+2))(b^(3+2))(c^2)=625a^8b^5c^2

Apr 22, 2015

We know that color(blue)((ab)^2 = a^2 * b ^2

Hence
(25a^2b)^3(1/5abc)^2

= {25^3 * (a^2)^3 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}

= {(5^2)^3 * a^6 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}

= {5^6 * a^6 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}

Next, we group the Constants and the Same Variables together

= (5^6*(1/5)^2)*(a^6*a^2)*(b^3*b^2)*c^2

= (5^6/5^2)*(a^6*a^2)*(b^3*b^2)*c^2

Two important laws of Exponents:

color(green)(a^m*a^n = a^(m+n) if a!=0
color(green)(a^m/a^n = a^(m -n) if a!=0

Applying these, we get

= (5^(6-2))(a^(6+2))*(b^(3+2))*c^2

= 5^4 * a^8 * b^5 *c^2

= 625a^8b^5c^2