We know that color(blue)((ab)^2 = a^2 * b ^2
Hence
(25a^2b)^3(1/5abc)^2
= {25^3 * (a^2)^3 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}
= {(5^2)^3 * a^6 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}
= {5^6 * a^6 * b^3} * {(1/5)^2 * a^2 * b^2 * c^2}
Next, we group the Constants and the Same Variables together
= (5^6*(1/5)^2)*(a^6*a^2)*(b^3*b^2)*c^2
= (5^6/5^2)*(a^6*a^2)*(b^3*b^2)*c^2
Two important laws of Exponents:
color(green)(a^m*a^n = a^(m+n) if a!=0
color(green)(a^m/a^n = a^(m -n) if a!=0
Applying these, we get
= (5^(6-2))(a^(6+2))*(b^(3+2))*c^2
= 5^4 * a^8 * b^5 *c^2
= 625a^8b^5c^2