How do you multiply (-3-i)(4+2i) (3i)(4+2i) in trigonometric form?

1 Answer
Jan 22, 2016

10sqrt2 (cos(pi/4) + isin(pi/4)) 102(cos(π4)+isin(π4))

Explanation:

Multiply out brackets (distributive law ) -using FOIL method.

(-3 - i )(4 + 2i ) = - 12 -6i - 4i -2i^2 (3i)(4+2i)=126i4i2i2

[ i^2 = -1 ] i2=1]

hence - 12 -10i + 2 = -10 - 10i color(black)(" is the result ") 1210i+2=1010i is the result

To convert to trig form require to find modulus r , and
argument, theta θ

r = sqrt( (-10)^2 + (-10)^2 ) = sqrt200 =10sqrt2(10)2+(10)2=200=102

and theta = tan^-1 ((-10)/-10) = tan^-1 (1 )= pi/4 θ=tan1(1010)=tan1(1)=π4

in trig form : 10sqrt2 (cos(pi/4) + isin(pi/4))102(cos(π4)+isin(π4))