How do you multiply (4+5i)(-3+7i) in trigonometric form?

1 Answer
Feb 28, 2018

(4+5i)(-3+7i)=48.765cis2.317
(4+5i)(-3+7i)=-33.111+35.842i

Explanation:

Let
z_1=4+5i
z_2=-3+7i
We need to find

z=z_1z_2
r_1=sqrt(4^2+5^2)=sqrt(16+25)=sqrt41
r1=sqrt41
theta_1=tan^-1(5/4)
z_1=r_1cistheta_1
z_1=sqrt41cis(tan^-1(5/4))

r_2=sqrt((-3)^2+7^2)=sqrt(9+49)=sqrt58
r_2=sqrt58
theta_2=tan^-1(7/-3)
z_2=r_2cistheta_2
z_2=sqrt58cis(tan^-1(7/-3))

z=z_1z_2
z=(sqrt41cis(tan^-1(5/4)))(sqrt58cis(tan^-1(7/-3)))

z=sqrt41sqrt58cis(tan^-1(5/4))cis(tan^-1(7/-3))
sqrt41sqrt58=sqrt(41xx58)=sqrt2378
By De-Moivre's Theorem

cis(tan^-1(5/4))cis(tan^-1(7/-3))=cis(tan^-1(5/4)+tan^-1(7/-3))
tan^-1(5/4)+tan^-1(7/-3)=tan^-1((5/4+7/-3)/(1-5/4xx7/-3))

5/4+7/-3=(5xx-3+7xx4)/(4xx-3)=(-15+28)/-12=13/-12
z=rcistheta

r=sqrt2378
theta=tan^-1(13/-12)
z=sqrt2378cis(tan^-1(13/-12))
r=48.765
tan^-1(13/-12)
adjacent side is negative,
the angle lies in the second quadrant
tan^-1(13/-12)=pi-tan^-1(13/12)
tan^-1(13/12)=0.825
expressed in radians
tan^-1(13/12)=pi-0.825
theta=2.317

cos0.825=-0.679
since the complex number is in 2nd quadrant
sin0.825=0.735

r=48.765
x=rcostheta=48.765xx(-0.679)
x=-33.111

y=rsintheta=48.765xx0.735
y=35.842
z=x+iy

z=(-33.111)+i(35.842)

Thus,
(4+5i)(-3+7i)=48.765cis2.317
(4+5i)(-3+7i)=-33.111+35.842i