How do you multiply 4\sqrt { 15a } \cdot 4\sqrt { 3a }?

1 Answer
Mar 11, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

4 * 4 * sqrt(15a)sqrt(3a) =>

16sqrt(15a)sqrt(3a)

Next, use this rule for radicals to combine the radicals:

sqrt(color(red)(a)) * sqrt(color(blue)(b)) = sqrt(color(red)(a) * color(blue)(b))

16sqrt(color(red)(15a)) * sqrt(color(blue)(3a)) =>

16sqrt(color(red)(15a) * color(blue)(3a)) =>

16sqrt(45a^2)

Then, rewrite the term in the radical as:

16sqrt(9a^2 * 5)

Now, use this rule of radicals to complete the simplification:

sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))

16sqrt(color(red)(9a^2) * color(blue)(5)) =>

16sqrt(color(red)(9a^2)) * sqrt(color(blue)(5)) =>

16 * 3a * sqrt(color(blue)(5)) =>

48asqrt(5)