How do you multiply (7-3i)(5-i) (73i)(5i) in trigonometric form?

1 Answer
Mar 8, 2017

(7-3i)(5-i)=2sqrt377(costheta+isintheta)(73i)(5i)=2377(cosθ+isinθ), where theta=tan^(-1)(-11/16)θ=tan1(1116)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their multipication leads us to

{r_1*r_2}{(cosalpha+isinalpha)*(cosbeta+isinbeta)}{r1r2}{(cosα+isinα)(cosβ+isinβ)} or

{r_1*r_2}{(cosalphacosbeta+i^2sinalphasinbeta)+i(cosalphasinbeta+cosbetasinalpha)){r1r2}{(cosαcosβ+i2sinαsinβ)+i(cosαsinβ+cosβsinα)) or

{r_1*r_2}{(cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+cosbetasinalpha)){r1r2}{(cosαcosβsinαsinβ)+i(cosαsinβ+cosβsinα)) or

(r_1*r_2)*(cos(alpha+beta)+isin(alpha+beta))(r1r2)(cos(α+β)+isin(α+β)) or

z_1*z_2z1z2 is given by (r_1*r_2, (alpha+beta))(r1r2,(α+β))

So for multiplication of complex number z_1z1 and z_2z2 , take new angle as (alpha+beta)(α+β) and modulus os r_1*r_2r1r2 of the modulus of two numbers.

Here 7-3i73i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt(7^2+(-3)^2)=sqrt58r1=72+(3)2=58 and alpha=tan^(-1)((-3)/7)α=tan1(37)

and 5-i5i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt(5^2+(-1)^2)=sqrt26r2=52+(1)2=26 and beta=tan^(-1)(-1/5)β=tan1(15)

and z_1*z_2=sqrt58*(sqrt26)(costheta+isintheta)z1z2=58(26)(cosθ+isinθ), where theta=alpha+betaθ=α+β

Hence, tantheta=tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)=((-3)/7+(-1/5))/(1-((-3)/7xx(-1/5)))=(-22/35)/(32/35)=-22/32=-11/16tanθ=tan(α+β)=tanα+tanβ1tanαtanβ=37+(15)1(37×(15))=22353235=2232=1116.

Hence, (7-3i)(5-i)=sqrt(58xx26)(costheta+isintheta)(73i)(5i)=58×26(cosθ+isinθ)

= 2sqrt377(costheta+isintheta)2377(cosθ+isinθ), where theta=tan^(-1)(-11/16)θ=tan1(1116)