The Multiplication can occur in two ways (1) :[AB, and, (2) : BA.
In General, ABneBA.
Let A_(3xx3)=[a_(ij)] and B_(3xx3)=[b_(jk)]
For AB to be defined, we must have,
No. of Columns in A=no. of Rows in B.
We find that this cond. is satisfied in our case, so, AB is defined.
Let AB=C=[c_(ik)]_(3xx3), where,
c_(ik)=sum_(j=1)^(j=3) (a_(ij)*b_(jk)), i,k=1,2,3.
:. c_11=sum_(j=1)^(j=3) (a_(1j)*b_(j1))=a_11*b_11+a_12*b_21+a_13*b_31
:. c_11=1*1+0*0+2*3=7. Similarly,
c_12=1*1+0*2+2(-1)=-1
c_13=1*0+0*1+2*0=0
c_21=3*1+(-1)0+0*3=3
c_22=3*1+(-1)2+0*(-1)=1
c_23=3*0+(-1)1+0*0=-1
c_31=0*1+5*0+1*3=3
c_32=0*1+5*2+1*(-1)=9
c_33=0*0+5*1+1*0=5
:. [C]=[AB]=[(7,-1,0),(3,1,-1),(3,9,5)].
Similarly, we can work out, [BA]=[(4,-1,2),(6,3,1),(0,1,6)].
Enjoy Maths.!