How do you multiply e^((17 pi )/ 12 ) * e^( pi/4 i ) e17π12eπ4i in trigonometric form?

1 Answer
Jul 27, 2018

color(purple)(=> 60.5825 - 60.5825 i)60.582560.5825i

Explanation:

e^((17pi)/12) * e^((pi/4)i)e17π12e(π4)i

e^((pi/4)i) = cos (pi/4) + i sin(pi/4)e(π4)i=cos(π4)+isin(π4)

=> 1/sqrt2 + (1/sqrt2) i 12+(12)i

e^((17pi)/12) ~~ 85.6774e17π1285.6774

e^((17pi)/12) * e^((pi/4)i) = 85.6774 * (0.7071 - 0.7071 i)e17π12e(π4)i=85.6774(0.70710.7071i)

color(purple)(=> 60.5825 - 60.5825 i)60.582560.5825i