How do you multiply e^(( 19pi )/ 12 ) * e^( pi/2 i ) in trigonometric form?

1 Answer
Jan 26, 2018

The answer is =(sqrt6+sqrt2)/4+i(sqrt6-sqrt2)/4

Explanation:

Apply Euler's Identity

e^(itheta)=costheta+isintheta

i^2=-1

Therefore,

e^(ipi/2)=cos(pi/2)+isin(pi/2)=0+i*1=i

e^(i19/12pi)=cos(19/12pi)+isin(19/12pi)

cos(19/12pi)=cos(5/4pi+1/3pi)

=cos(5/4pi)cos(1/3pi)-sin(5/4pi)sin(1/3pi)

=(-sqrt2/2)*(1/2)-(-sqrt2/2)*(sqrt3/2)

=-sqrt2/4+sqrt6/4

=(sqrt6-sqrt2)/4

sin(19/12pi)=sin(5/4pi+1/3pi)

=sin(5/4pi)cos(1/3pi)+cos(5/4pi)sin(1/3pi)

=(-sqrt2/2)*(1/2)+(-sqrt2/2)*(sqrt3/2)

=-sqrt2/4-sqrt6/4

=-(sqrt6+sqrt2)/4

Finally,

e^(i19/12pi)*e^(ipi/2)=((sqrt6-sqrt2)/4-i(sqrt6+sqrt2)/4)*(i)

=(sqrt6+sqrt2)/4+i(sqrt6-sqrt2)/4