How do you multiply e^(( 19pi )/ 8 i) * e^( pi/2 i ) in trigonometric form?

1 Answer
May 31, 2017

e^(19/8pi i)*e^(1/2pi i)=1/2(sqrt(2-sqrt2) i-sqrt(2+sqrt2))

Explanation:

By the multiplication rule of exponents, we can rewrite the equation as one exponent:

e^(19/8pi i)*e^(1/2pi i)=e^((19/8pi+1/2pi)i)=e^(23/8pi i)

Recall Euler's formula:

e^(theta i) -=costheta+isintheta

e^(23/8 pi i)=cos(23/8 pi)+isin(23/8 pi)

cos(23/8pi)-sqrt(2+sqrt2)/2

isin(23/8pi)=sqrt(2-sqrt2)/2 i

Adding the two, we get:

sqrt(2-sqrt2)/2 i-sqrt(2+sqrt2)/2=1/2(sqrt(2-sqrt2) i-sqrt(2+sqrt2))

therefore e^(19/8pi i)*e^(1/2pii)=1/2(sqrt(2-sqrt2) i-sqrt(2+sqrt2))