How do you multiply e^(( 3 pi )/ 2 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Mar 27, 2016

e^((3pi)/2i)*e^((3pi)/2i)=-1

Explanation:

As e^(itheta)=costheta+isintheta, we have

e^((3pi)/2i)=cos((3pi)/2)+isin((3pi)/2).

Hence, e^((3pi)/2i)*e^((3pi)/2i)=

{cos((3pi)/2)+isin((3pi)/2)}*{cos((3pi)/2)+isin((3pi)/2)} or

= {cos^2((3pi)/2)+i^2sin^2((3pi)/2)+2isin((3pi)/2)cos((3pi)/2)}

= {cos^2((3pi)/2)+(-1)sin^2((3pi)/2)+i(2sin((3pi)/2)cos((3pi)/2))}

= {(cos^2((3pi)/2)-sin^2((3pi)/2))+i(2sin((3pi)/2)cos((3pi)/2))}

= cos(2xx(3pi)/2)+isin(2xx(3pi)/2)

= cos3pi+isin3pi

= -1+ixx0=-1