How do you multiply e3π4ie3π2i in trigonometric form?

1 Answer
Mar 9, 2016

ei3π4ei3π2=12+i2

Explanation:

From the identity

eiθcos(θ)+isin(θ)

We write

ei3π4ei3π2=(cos(3π4)+isin(3π4))(cos(3π2)+isin(3π2))

=(12+i(12))(0+i(1))

=12(1+i)(i)

=12(i+1)

=12+i2