How do you multiply e^(( 4 pi )/ 3 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Nov 18, 2017

e^((4pi)/3i)*e^((3pi)/2i)=cos((17pi)/2)+isin((17pi)/2)

Explanation:

We can write exponential fom of complex number e^(itheta) in trigonometric form as costheta+isintheta

Hence e^((4pi)/3i)=cos((4pi)/3)+isin((4pi)/3)

and e^((3pi)/2i)=cos((3pi)/2)+isin((3pi)/2)

Hence e^((4pi)/3i)*e^((3pi)/2i)

= (cos((4pi)/3)+isin((4pi)/3))*(cos((3pi)/2)+isin((3pi)/2))

= cos((4pi)/3)cos((3pi)/2)+i^2sin((4pi)/3)sin((3pi)/2)+i{sin((4pi)/3)cos((3pi)/2)+cos((4pi)/3)sin((3pi)/2)}

= {cos((4pi)/3)cos((3pi)/2)-sin((4pi)/3)sin((3pi)/2)}+i{sin((4pi)/3)cos((3pi)/2)+cos((4pi)/3)sin((3pi)/2)}

= cos((4pi)/3+(3pi)/2)+isin((4pi)/3+(3pi)/2)

= cos((17pi)/2)+isin((17pi)/2)

Observe that this is e^((17pi)/2) which is nothing but e^((4pi)/3+(3pi)/2).