How do you multiply e^(( 4 pi )/ 3 i) * e^( pi/2 i ) in trigonometric form?

1 Answer

\frac{\sqrt3-i}{2}

Explanation:

e^{{4\pi}/3i}\cdot e^{\pi/2i}

=e^{{4\pi}/3i+\pi/2i}

=e^{i({4\pi}/3+\pi/2)}

=e^{{11\pi}/6i}

=\cos({11\pi}/6)+i\sin({11\pi}/6)

=\cos(2\pi-{\pi}/6)+i\sin(2\pi-{\pi}/6)

=\cos({\pi}/6)-i\sin({\pi}/6)

=\sqrt3/2-i 1/2

=\frac{\sqrt3-i}{2}