As e^(itheta)=costheta+isintheta, we have
e^((9pi)/4i)=cos((9pi)/4)+isin((9pi)/4) and
e^(pi/2i)=cos(pi/2)+isin(pi/2)
Hence e^((9pi)/4i)*e^(pi/2i)=(cos((9pi)/4)+isin((9pi)/4))(cos(pi/2)+isin(pi/2))
= cos((9pi)/4)(cos(pi/2)+isin(pi/2))+isin((9pi)/4))(cos(pi/2)+isin(pi/2))
= cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)+i^2sin((9pi)/4)sin(pi/2))
= cos((9pi)/4)cos(pi/2)+icos((9pi)/4)sin(pi/2))+isin((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))
= (cos((9pi)/4)cos(pi/2)-sin((9pi)/4)sin(pi/2))+i(sin((9pi)/4)cos(pi/2)+cos((9pi)/4)sin(pi/2))
= cos(((9pi)/4)+(pi/2))+isin(((9pi)/4)+(pi/2))
= cos((11pi)/4)+isin((11pi)/4)
= e^((11pi)/4)