We know that
e^a* e^b=e^(a+b)
cos(a+b)=cosacosb-sinasinb
sin(a+b)=sinacosb+sinbcosa
Therefore,
e^(pi/12i)*e^(ipi)=e^(13/12ipi)
According to Euler's Identity
e^(13/12ipi)=cos(13/12pi)+isin(13/12pi)
But,
13/12pi=3/4pi+1/3pi
Therefore,
cos(13/12pi)=cos(3/4pi+1/3pi)=cos(3/4pi)cos(1/3pi)-sin(3/4pi)sin(1/3pi)
= (-sqrt2/2) * (1/2) -( sqrt2/2)*(sqrt3/2)
=-((sqrt2+sqrt6))/4
sin(13/12pi)=sin(3/4pi+1/3pi)=sin(3/4pi)cos(1/3pi)+cos(3/4pi)sin(1/3pi)
= (sqrt2/2) * (1/2) +( -sqrt2/2)*(sqrt3/2)
=((sqrt2-sqrt6))/4
So,
e^(13/12ipi)=-((sqrt2+sqrt6))/4+i((sqrt2-sqrt6))/4