How do you multiply e^((pi)/12i ) * e^( pi i ) in trigonometric form?

1 Answer
Dec 11, 2017

The answer is =-((sqrt2+sqrt6))/4+i((sqrt2-sqrt6))/4

Explanation:

We know that

e^a* e^b=e^(a+b)

cos(a+b)=cosacosb-sinasinb

sin(a+b)=sinacosb+sinbcosa

Therefore,

e^(pi/12i)*e^(ipi)=e^(13/12ipi)

According to Euler's Identity

e^(13/12ipi)=cos(13/12pi)+isin(13/12pi)

But,

13/12pi=3/4pi+1/3pi

Therefore,

cos(13/12pi)=cos(3/4pi+1/3pi)=cos(3/4pi)cos(1/3pi)-sin(3/4pi)sin(1/3pi)

= (-sqrt2/2) * (1/2) -( sqrt2/2)*(sqrt3/2)

=-((sqrt2+sqrt6))/4

sin(13/12pi)=sin(3/4pi+1/3pi)=sin(3/4pi)cos(1/3pi)+cos(3/4pi)sin(1/3pi)

= (sqrt2/2) * (1/2) +( -sqrt2/2)*(sqrt3/2)

=((sqrt2-sqrt6))/4

So,

e^(13/12ipi)=-((sqrt2+sqrt6))/4+i((sqrt2-sqrt6))/4