How do you multiply e^(( pi )/ 2 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Sep 25, 2017

The answer is =1

Explanation:

We apply Euler's identity

e^(itheta)=costheta +i sin theta

i^2=-1

e^a *e^b=e^(a+b)

So,

e^(ipi/2)=cos(pi/2)+isin(pi/2)=0+1*i=i

e^(i3pi/2)=cos(3/2pi)+isin(3/2pi)=0-1*i=-i

Therefore,

e^ (ipi/2)* e^(i3pi/2)=i*-i=-i^2=1

We can also perform

e^(ipi/2)*e^(i3pi/2)=e^((ipi/2+i3pi/2))=e^(i4pi/2)=e^(i2pi)

=cos(2pi)+isin(2pi)

=1+i*0=1