How do you multiply e^((pi)/2i ) * e^( pi i ) in trigonometric form?

1 Answer
Sep 30, 2016

e^(pi/2i)*e^(pii)=e^(pi/2+pi)

Explanation:

As e^(itheta)=costheta+isintheta

e^(pi/2i)=cos(pi/2)+isin(pi/2) and

e^(pii)=cospi+isinpi

and e^(pi/2i)*e^(pii)=(cos(pi/2)+isin(pi/2))(cospi+isinpi)

= cos(pi/2)cospi+cos(pi/2)xxisinpi+isin(pi/2)xxcospi+isinpixxisin(pi/2)

= cos(pi/2)cospi+icos(pi/2)sinpi+isin(pi/2)cospi+i^2sinpisin(pi/2)

= cos(pi/2)cospi+icos(pi/2)sinpi+isin(pi/2)cospi-sinpisin(pi/2)

= [cos(pi/2)cospi-sinpisin(pi/2)]+i[cos(pi/2)sinpi+sin(pi/2)cospi]

= cos(pi/2+pi)+isin(pi/2+pi)

= e^(pi/2+pi)