Apply Euler's Identity
e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ
i^2=-1i2=−1
Therefore,
e^(pi/4i)=cos(pi/4)+isin(pi/4)=sqrt2/2+isqrt2/2=sqrt2/2(1+i)eπ4i=cos(π4)+isin(π4)=√22+i√22=√22(1+i)
e^(3/2pii)=cos(3/2pi)+isin(3/2pi)=0-ie32πi=cos(32π)+isin(32π)=0−i
So,
z=e^(pi/4i)*e^(3/2pii)=sqrt2/2(1+i)*(-i)=sqrt2/2(-i-i^2)z=eπ4i⋅e32πi=√22(1+i)⋅(−i)=√22(−i−i2)
=sqrt2/2(1-i)=√22(1−i)
"Verification"Verification
z=(cosphi+isinphi)=sqrt2/2(1-i)z=(cosϕ+isinϕ)=√22(1−i)
cosphi=sqrt2/2cosϕ=√22
sinphi=-sqrt2/2sinϕ=−√22
phi=-pi/4ϕ=−π4, [2pi][2π]
z=e^(pi/4i)*e^(3/2pii)=e^((pi/4+3/2pi)i)=e^(7/4pii)=e^(-1/4pii)z=eπ4i⋅e32πi=e(π4+32π)i=e74πi=e−14πi