How do you multiply e^(( pi )/ 4 i) * e^( pi/2 i ) in trigonometric form?

1 Answer
Nov 4, 2016

e^(pi/4i)*e^(pi/2i)=-1/sqrt2+1/sqrt2i

Explanation:

As e^(pi/4i)=cos(pi/4)+isin(pi/4)

and e^(pi/2i)=cos(pi/2)+isin(pi/2)

e^(pi/4i)*e^(pi/2i)

= (cos(pi/4)+isin(pi/4))*(cos(pi/2)+isin(pi/2))

= cos(pi/2)cos(pi/4)+icos(pi/2)sin(pi/4)+isin(pi/2)cos(pi/4)+i^2sin(pi/2)sin(pi/4)

= cos(pi/2)cos(pi/4)+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)

= {cos(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)}+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)

= cos(pi/2+pi/4)+isin(pi/2+pi/4)

= cos((3pi)/4)+isin((3pi)/4)

= -1/sqrt2+1/sqrt2i