As e^(pi/4i)=cos(pi/4)+isin(pi/4)
and e^(pi/2i)=cos(pi/2)+isin(pi/2)
e^(pi/4i)*e^(pi/2i)
= (cos(pi/4)+isin(pi/4))*(cos(pi/2)+isin(pi/2))
= cos(pi/2)cos(pi/4)+icos(pi/2)sin(pi/4)+isin(pi/2)cos(pi/4)+i^2sin(pi/2)sin(pi/4)
= cos(pi/2)cos(pi/4)+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)
= {cos(pi/2)cos(pi/4)-sin(pi/2)sin(pi/4)}+i{cos(pi/2)sin(pi/4)}+sin(pi/2)cos(pi/4)
= cos(pi/2+pi/4)+isin(pi/2+pi/4)
= cos((3pi)/4)+isin((3pi)/4)
= -1/sqrt2+1/sqrt2i