How do you normalize <3, -6, 2><3,6,2>?

1 Answer
Jan 23, 2017

u=<3/7,-6/7,2/7>u=<37,67,27>

Explanation:

In normalizing the vector we are finding a unit vector (magnitude/length of one) in the same direction as the given vector. This can be accomplished by dividing the given vector by its magnitude.

u=v/(|v|)u=v|v|

Given v=<3,-6,2>v=<3,6,2>, we can calculate the magnitude of the vector:

|v|=sqrt((v_x)^2+(v_y)^2+(v_z)^2)|v|=(vx)2+(vy)2+(vz)2

|v|=sqrt((3)^2+(-6)^2+(2)^2)|v|=(3)2+(6)2+(2)2

|v|=sqrt(9+36+4)|v|=9+36+4

|v|=sqrt(49)|v|=49

|v|=7|v|=7

We now have:

u=(<3,-6,2>)/7u=<3,6,2>7

=>u=<3/7,-6/7,2/7>u=<37,67,27>

Hope that helps!