How do you normalize <3, -6, 2><3,−6,2>?
1 Answer
Jan 23, 2017
Explanation:
In normalizing the vector we are finding a unit vector (magnitude/length of one) in the same direction as the given vector. This can be accomplished by dividing the given vector by its magnitude.
u=v/(|v|)u=v|v|
Given
|v|=sqrt((v_x)^2+(v_y)^2+(v_z)^2)|v|=√(vx)2+(vy)2+(vz)2
|v|=sqrt((3)^2+(-6)^2+(2)^2)|v|=√(3)2+(−6)2+(2)2
|v|=sqrt(9+36+4)|v|=√9+36+4
|v|=sqrt(49)|v|=√49
|v|=7|v|=7
We now have:
u=(<3,-6,2>)/7u=<3,−6,2>7
Hope that helps!