How do you perform the operation in trigonometric form (0.45(cos(310)+isin(310)))(0.6(cos(200)+isin(200)))?

1 Answer
Jan 5, 2017

(0.45(cos310^@+isin310^@))(0.6(cos200^@+isin200^@))=0.27(-sqrt3/2+1/2i)

Explanation:

Two complex numbers in polar form z_1=r_1(cosalpha+isinalpha) and z_2=r_2(cosbeta+isinbeta) can be multiplied as under,

z_1*z_2=r_1*r_2[cosalphacosbeta+icosalphasinbeta+isinalphacosbeta+i^2sinalphasinbeta]

= r_1*r_2[(cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+sinalphacosbeta)]

= r_1*r_2[cos(alpha+beta)+isin(alpha+beta)]

Hence (0.45(cos310^@+isin310^@))(0.6(cos200^@+isin200^@))

= 0.45xx0.6(cos(310^@+200^@)+isin(310^@+200^@))

= 0.27(cos510^@+isin510^@)

= 0.27(cos(360^@+150^@)+isin(360^@+150^@))

= 0.27(cos150^@+isin150^@)

= 0.27(-sqrt3/2+1/2i)