Two complex numbers in polar form z_1=r_1(cosalpha+isinalpha) and z_2=r_2(cosbeta+isinbeta) can be multiplied as under,
z_1*z_2=r_1*r_2[cosalphacosbeta+icosalphasinbeta+isinalphacosbeta+i^2sinalphasinbeta]
= r_1*r_2[(cosalphacosbeta-sinalphasinbeta)+i(cosalphasinbeta+sinalphacosbeta)]
= r_1*r_2[cos(alpha+beta)+isin(alpha+beta)]
Hence (0.45(cos310^@+isin310^@))(0.6(cos200^@+isin200^@))
= 0.45xx0.6(cos(310^@+200^@)+isin(310^@+200^@))
= 0.27(cos510^@+isin510^@)
= 0.27(cos(360^@+150^@)+isin(360^@+150^@))
= 0.27(cos150^@+isin150^@)
= 0.27(-sqrt3/2+1/2i)