How do you prove 1 + tan^2x/(1-tan^2x) = 1/(cos^2x - sin^2x) 1+tan2x1tan2x=1cos2xsin2x?

1 Answer
Dec 7, 2015

That's true only if cos^2 x = 1 Rightarrow x in pi ZZ

Explanation:

1 + tan^2 x / (1- tan^2 x) = 1 + frac{sin^2 x/ cos^2 x}{ 1- sin^2 x/cos^2 x} =

1 + sin^2 x / (cos^2 x - sin^2 x) =

(cos^2 x - sin^2 x + sin^2 x) / (cos^2 x - sin^2 x) = cos^2 x / (cos^2 x - sin^2 x)