How do you prove (1 + tan^2x)/(1-tan^2x) = (sin^2x+cos^2x)/(cos^2x - sin^2x) 1+tan2x1tan2x=sin2x+cos2xcos2xsin2x?

1 Answer
Apr 21, 2018

LHS =(1 + tan^2x)/(1-tan^2x)LHS=1+tan2x1tan2x

=(1+sin^2x/cos^2x)/(1-sin^2x/cos^2x)=1+sin2xcos2x1sin2xcos2x

=((cos^2x+sin^2x)/cos^2x)/((cos^2x-sin^2x)/cos^2x)=cos2x+sin2xcos2xcos2xsin2xcos2x

= (sin^2x+cos^2x)/(cos^2x - sin^2x) =RHS=sin2x+cos2xcos2xsin2x=RHS