How do you prove cot^-1(x)=pi/2-tan^-1(x)?

1 Answer

Kindly see the solution for the answer

Explanation:

The solution

Let alpha be the angle with tangent=x
Let beta=pi/2-alpha be the angle with cotangent =x

Then alpha+beta=pi/2

cot^-1 x=pi/2-tan^-1 x

cot^-1 x=pi/2-tan^-1 x

cot^-1 x=pi/2-(pi/2-cot^-1 x)

cot^-1 x=pi/2-pi/2+cot^-1 x

cot^-1 x=cot^-1 x

God bless....I hope the explanation is useful.