How do you prove cscx-(secxsin^2x)/tanx=cos^3xcscxsecx cscxsecxsin2xtanx=cos3xcscxsecx?

1 Answer
May 19, 2016

Please see below.

Explanation:

cscx-(secxsin^2x)/tanxcscxsecxsin2xtanx

= 1/sinx-(1/cosx xxsin^2x)/(sinx/cosx)1sinx1cosx×sin2xsinxcosx

= 1/sinx-(1/cosx xxsin^2x xx cosx/sinx)1sinx(1cosx×sin2x×cosxsinx)

= 1/sinx-sinx1sinxsinx

= (1-sin^2x)/sinx1sin2xsinx

= cos^2x/sinxcos2xsinx

= cos^2xcscx xx cosx xx1/cosxcos2xcscx×cosx×1cosx

= cos^2x xx cscx xx cosx xx secxcos2x×cscx×cosx×secx

= cos^3xcscxsecxcos3xcscxsecx