How do you prove sin(5π4)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer ali ergin Jun 25, 2016 sin(5π4)=−√22 Explanation: sin(5π4)=sin(π+π4) sin(a+b)=sina⋅cosb+cosa⋅sinb sin(π+π4)=sinπ⋅cos(π4)+cosπ⋅sin(π4) sinπ=0 ; cosπ=−1 sin(π4)=√22 ; cos(π4)=√22 sin(5π4)=0⋅√22−1⋅√22 sin(5π4)=−√22 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140∘? How do you find the value of cot300∘? What is the value of sin−45∘? How do you find the trigonometric functions of values that are greater than 360∘? How do you use the reference angles to find sin210cos330−tan135? How do you know if sin30=sin150? How do you show that (cosθ)(secθ)=1 if θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 1968 views around the world You can reuse this answer Creative Commons License