How do you prove that 1- cos^2(x/2) = (sin^2x)/(2(1+cosx)) 1cos2(x2)=sin2x2(1+cosx)?

2 Answers
Jun 5, 2018

Using that
cos(x)=2cos^2(x/2)-1cos(x)=2cos2(x2)1

Explanation:

so we have
2(1+cos(x))=2(2cos^2(x/2)-1)=4cos^2(x/2)2(1+cos(x))=2(2cos2(x2)1)=4cos2(x2)
so we get
4cos^2(x/2)(1-cos^2(x/2))4cos2(x2)(1cos2(x2))
and
sin^2(x)=1-cos^2(x)sin2(x)=1cos2(x)
1-(2cos^2(x/2)-1)^21(2cos2(x2)1)2
1-4cos^2(x/2)-1+4cos^2(x/2)14cos2(x2)1+4cos2(x2)
4cos^2(x/2)(1-cos^2(x/2))4cos2(x2)(1cos2(x2))

Jun 5, 2018

Please find a Proof in Explanation.

Explanation:

Since, 1-cosx=2sin^2(x/2)1cosx=2sin2(x2), we have,

sin^2x/(2(1+cosx))=(1-cos^2x)/(2(1+cosx))sin2x2(1+cosx)=1cos2x2(1+cosx),

={cancel((1+cosx))(1-cosx)}/(2cancel((1+cosx)),

=(1-cosx)/2,

={cancel(2)sin^2(x/2)}/cancel(2),

=sin^2(x/2),

=1-cos^2(x/2), as desired!