How do you prove that 2cos^4x + 2sin^2xcos^2x = cos2x + 1 ?

1 Answer
Dec 23, 2015

Use the identities:
color(white)("XXX")cos^2(x)+sin^2(x)=1 (Pythagorean)
and
color(white)("XXX")cos(2x)=2cos^2(x)-1 (Double angle)

Explanation:

2cos^4(x)+2xin^2(x)cos^2(x)

=(2cos^2(x))*(cos^2(x)+sin^2(x))

=2cos^2(x)

=cos(2x)+1 since by double angle formula: cos(2x)=2cos^2(x)-1