How do you prove that ArcTan(1) + ArcTan(2) + ArcTan(3) = π?

1 Answer
Sep 24, 2015

Prove that (arctan (1) + arctan (2) + arctan (3) = pi)

Explanation:

Call artan (1) = x; arctan (2) = y; and arctan (3) = z
Apply the trig identity: tan(a+b)=tana+tanb1tana.tanb
First evaluate tan u = tan (x + y);
tanu=tan(x+y)=tanx+tany1tanx.tany=1+212=3
Next, evaluate tan (z + u)
tan(z+u)=tanz+tanu1tanz.tanu=3+319=0
Finally: tan (u + z) = tan (x + y + z) = 0 = tanπ, therefor:
arctan (1) + arctan (2) + arctan (3) = x + y + z = π