csc^2(x) - sin^2(x) - cos^2(x) = 1/sin^2(x) - sin^2(x)-cos^2(x)csc2(x)−sin2(x)−cos2(x)=1sin2(x)−sin2(x)−cos2(x)
= 1/sin^2(x) - (sin^2(x) + cos^2(x))=1sin2(x)−(sin2(x)+cos2(x))
= 1/sin^2(x) - 1=1sin2(x)−1
= 1/sin^2(x) - sin^2(x)/sin^2(x)=1sin2(x)−sin2(x)sin2(x)
= (1-sin^2(x))/sin^2(x)=1−sin2(x)sin2(x)
= cos^2(x)/sin^2(x)=cos2(x)sin2(x)
= cot^2(x)=cot2(x)
Then, as
cot^2(x)=csc^2(x) - sin^2(x) - cos^2(x)cot2(x)=csc2(x)−sin2(x)−cos2(x)
Adding csc^2(x)csc2(x) to both sides gives us
cot^2(x) + csc^2(x) = 2csc^2(x) - sin^2(x) - cos^2(x)cot2(x)+csc2(x)=2csc2(x)−sin2(x)−cos2(x)