How do you prove that cot^2 x +csc^2 x = 2csc^2 x - sin^2x-cos^2x cot2x+csc2x=2csc2xsin2xcos2x?

1 Answer
Dec 20, 2015

csc^2(x) - sin^2(x) - cos^2(x) = 1/sin^2(x) - sin^2(x)-cos^2(x)csc2(x)sin2(x)cos2(x)=1sin2(x)sin2(x)cos2(x)

= 1/sin^2(x) - (sin^2(x) + cos^2(x))=1sin2(x)(sin2(x)+cos2(x))

= 1/sin^2(x) - 1=1sin2(x)1

= 1/sin^2(x) - sin^2(x)/sin^2(x)=1sin2(x)sin2(x)sin2(x)

= (1-sin^2(x))/sin^2(x)=1sin2(x)sin2(x)

= cos^2(x)/sin^2(x)=cos2(x)sin2(x)

= cot^2(x)=cot2(x)

Then, as

cot^2(x)=csc^2(x) - sin^2(x) - cos^2(x)cot2(x)=csc2(x)sin2(x)cos2(x)

Adding csc^2(x)csc2(x) to both sides gives us

cot^2(x) + csc^2(x) = 2csc^2(x) - sin^2(x) - cos^2(x)cot2(x)+csc2(x)=2csc2(x)sin2(x)cos2(x)