How do you prove that sqrtx is continuous?
1 Answer
We need to prove that for any point
| x-a| < delta => | sqrt(x)-sqrt(a) | < epsilon
So, to find a suitable
\ \ \ \ \ | sqrt(x)-sqrt(a) | < epsilon
:. | sqrt(x)-sqrt(a) | * | sqrt(x)+sqrt(a) | < epsilon * | sqrt(x)-sqrt(a) |
:. | (sqrt(x)-sqrt(a)) * (sqrt(x)+sqrt(a)) | < epsilon * | sqrt(x)-sqrt(a) |
:. | sqrt(x)sqrt(x) +sqrt(x)sqrt(a)-sqrt(x)sqrt(a)-sqrt(a)sqrt(a)| < epsilon * | sqrt(x)-sqrt(a) |
:. | x -a| < epsilon * | sqrt(x)-sqrt(a) | ..... [1]
Now, if you require that
\ \ \ \ \ \ a−1 < x < a+1
:. sqrt(x) < sqrt(a+1) .
:. sqrt(x) + sqrt(a) < sqrt(a+1) + sqrt(a) ,
which combined with [1] gives;
So, let
Hence we have proved that