How do you show cos(x+pi/2)+cos(x-pi/2)=0cos(x+π2)+cos(xπ2)=0?

1 Answer
Mar 7, 2018

We need to use the trig identity:
cos(A+-B)=cosAcosB∓sinAsinBcos(A±B)=cosAcosBsinAsinB

Using this, we get:
cos(x+pi/2)+cos(x-pi/2)=(cosxcos(pi/2)+sinxsin(pi/2))+(cosxcos(pi/2)-sinxsin(pi/2))cos(x+π2)+cos(xπ2)=(cosxcos(π2)+sinxsin(π2))+(cosxcos(π2)sinxsin(π2))

cos(pi/2)=0cos(π2)=0
sin(pi/2)=1sin(π2)=1

cos(x+pi/2)+cos(x-pi/2)=(0cosx+1sinx)+(0cosx-1sinx)=sinx-sinx=0cos(x+π2)+cos(xπ2)=(0cosx+1sinx)+(0cosx1sinx)=sinxsinx=0