How do you simplify (1−(sqrt3)*i)^(1/2)?

1 Answer
Dec 11, 2015

Apply the identity
e^(i theta) = cos(theta)+isin(theta)

to find
(1-sqrt(3)i)^(1/2)=sqrt(6)/2 - sqrt(2)/2i

Explanation:

We will be using the identity

e^(i theta) = cos(theta)+isin(theta)


First, we can make some slight modifications to our original value to make it easier to find theta.

(1-sqrt(3)i)^(1/2) = (2(1/2-sqrt(3)/2i))^(1/2)

and now, using

cos(-pi/3) = 1/2 and sin(-pi/3) = -sqrt(3)/2

together with the above identity, and that (x^a)^b = x^(ab), we get

(2(1/2-sqrt(3)/2i))^(1/2) = (2cos(-pi/3)+isin(-pi/3))^(1/2)

= (2e^(i(-pi/3)))^(1/2)

= sqrt(2)e^(i(-pi/6))

= sqrt(2)(cos(-pi/6)+isin(-pi/6))

= sqrt(2)(sqrt(3)/2 - 1/2i)

= sqrt(6)/2 - sqrt(2)/2i