How do you simplify (1+tan(x)) / (1+cot(x))1+tan(x)1+cot(x)?

2 Answers

The answer is : tan xtanx

Explanation:

(1 + tan x)/(1 + cot x)1+tanx1+cotx
= (1 + tan x)/(1 + 1/(tan x) =1+tanx1+1tanx
= (1 + tan x)/(tan x + 1)cdottan x =1+tanxtanx+1tanx
=cancelcolor(red)(1 + tan x)/cancelcolor(red)(tan x + 1)cdottan x
=tanx

Nov 10, 2017

tanx

Explanation:

if you're not sure how to start then change everything to sine and cosines

(1+tanx)/(1+cotx)=(1+(sinx/cosx))/(1+(cosx/sinx))

=((cosx+sinx)/cosx)/((sinx+cosx)/sinx)

=(1/cosx)/(1/sinx)=sinx/cosx=tanx